Cho phương trình lo3^2(x) -4logx + m - 3 = 0. Tìm tất cả các giá trị nguyên

Câu hỏi :

Cho phương trình log32x4log3x+m3=0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt x1<x2 thỏa mãn x281x1<0. 

A. 4                             

B. 5                             

C. 6                             

D. 3

* Đáp án

D

* Hướng dẫn giải

Phương pháp:

- Tìm điều kiện xác định của phương trình.

- Đặt ẩn phụ log3x=t để phương trình đã cho về phương trình bậc hai ẩn t

- Từ điều kiện x1<x2 thỏa mãn x281x1<0 suy ra điều kiện của

- Áp dụng định lí Vi-ét cho phương trình bậc hai.

Cách giải:

ĐKXĐ: x > 0

Đặt log3x=t, phương trình đã cho trở thành: t24t+m3=0*

Để phương trình đã cho có 2 nghiệm phân biệt x1<x2 thì phương trình (*) có 2 nghiệm phân biệt t1<t2.

Suy ra Δ'=4m3=7m>0m<7 **.

Khi đó áp dụng Vi-et ta có t1+t2=4t1.t2=m3

Vì log3x1=t1log3x2=t2x1=3t1x2=3t2.

Theo bài ra ta có:

     x281x1<03t281.3t1<0

3t2<3t1+4t2<t1+4t2t1<4

t2t12<16 (do t2t1>0)

t2+t124t1t2<16

164m3<16

164m+12<0m>3

Kết hợp điều kiện (**) và điều kiện đề bài ta có 3<m<7mm4;5;6.

Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Chọn D.

Copyright © 2021 HOCTAP247