Trong tập hợp các số phức z thỏa mãn |z + 2 - i/z + 1 - i| = căn bậc hai của 2

Câu hỏi :

Trong tập hợp các số phức z thỏa mãn z+2iz+1i=2. Tìm mô-đun lớn nhất của số phức z + i.

A. 2+2

B. 3+2

C. 2-2

D. 3-2

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

Đặt dạng tổng quát của số phức

Áp dụng công thức tính modun số phức.

Cách giải:

Đặt z = a + bi theo bài ra ta có:

z+2iz+1i=2x+2+y1i=2x+1+y1i

x+22+y12=2x+12+2y12

x2+y12=2.

 Tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(0; 1), bán kính R=2.

Gọi A(0; -1) là điểm biểu diễn số phức -i, M(a; b) là điểm biểu diễn số phức z khi đó ta có |z + i| = MA

Do đó z+imaxMAmax=IA+R=2+2.

Trong tập hợp các số phức z thỏa mãn |z + 2 - i/z + 1 - i| = căn bậc hai của 2 (ảnh 1)

Chọn A.

Copyright © 2021 HOCTAP247