Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm SD, hãy tính theo a khoảng cách d từ M đến mặt phẳng (SAC). 

A. d=a151389

B. d=a131589

C. d=2a151389

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Đổi dM;SAC sang dH;SAC

- Trong (ABCD) kẻ HEACEAC, trong (SHE) kẻ HNSENSE, chứng minh HNSAC

- Xác định góc giữa SC và (ABCD), từ đó tính SH.

- Sử dụng SHAC=12HE.AC=12SABC, từ đó tính HE.

- Sử dụng hệ thức lượng trong tam giác vuông tính HN.

Cách giải:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a (ảnh 1)

Gọi H là trung điểm AB. ΔSAB cân tại S nên SHAB

Ta có: SABABCD=ABSHABCD,SHABSHABCD.

Gọi K=HDAC. Áp dụng định lí Ta-lét ta có: DKHK=DCAH=2DK=2HK.

Ta có MDSAC=SdM;SACdD;SAC=SMSD=12

dM;SAC=12dD;SAC.

Lại có DHSAC=K nên dD;SACdH;SAC=DKHK=2dD;SAC=2dH;SAC.

Do đó dM;SAC=dH;SAC.

Trong (ABCD) kẻ HEACEAC, trong (SHE) kẻ HNSENSE ta có:

ACHEACSHACSHEACHN

HNSEHNACHNSACdH;SAC=HN

 

SHABCD nên HC là hình chiếu vuông góc của SC lên (ABCD).

SC;ABCD=SC;HC=SCH=450.

ΔSHC vuông tại HSH=HC=BC2+BH2=2a2+a22=a172

Ta có: SHAC=12HE.AC=12SABC

HE.AC=12.AB.BC

HE=12.AB.BCAC=12.a.2aa2+2a2=a5

 

Áp dụng hệ thức lượng trong tam giác vuông SHE ta có:

Nên HN=SH.HESH2+HE2=a172.a517a24+a25=a151389.

Vậy dM;SAC=a151389.

Chọn A.

Copyright © 2021 HOCTAP247