Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 1, mặt bên SAB tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích V của khối cầu ngoại tiếp hình chóp đã cho.

A. V=515π18

B. V=5π3

C. V=515π54

D. V=43π27

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp có mặt bên vuông góc với đáy R=Rb2+Rd2gt24 với Rb,Rd lần lượt là bán kính đường tròn ngoại tiếp mặt bên vuông góc với đáy và bán kính mặt cầu ngoại tiếp đáy, gt là giao tuyến của mặt bên vuông góc đáy và mặt đáy.

Cách giải:

Mặt bên SAB là tam giác đều cạnh 1 nên Rb=33, đáy là tam giác đều cạnh 1 nên Rd=33.

Ta có SABABC=AB và AB = 1.

Vậy bán kính mặt cầu ngoại tiếp chóp S.ABC là: R=Rb2+Rd2gt24=13+1314=156.

Vậy thể tích mặt cầu ngoại tiếp chóp S.ABC là V=43πR3=43π.1562=515π54.

Chọn C.

Copyright © 2021 HOCTAP247