Cho hàm số y = f(x) có đạo hàm trên R, hàm số y = f'(x) liên tục trên R

Câu hỏi :

Cho hàm số y = f(x) có đạo hàm trên , hàm số y = f'(x) liên tục trên , hàm số y=f'x+2021 cắt trục hoành tại các điểm có hoành độ a, b, c là các số nguyên và có đồ thị như hình vẽ.

A. 2b - 2a + 1

B. 2b - 2a - 2

C. 2b - 2a + 2

D. 2b - 2a

* Đáp án

D

* Hướng dẫn giải

Phương pháp:

- Xác định khoảng của x ứng với f'x+20210.

- Hàm số y = g(x) nghịch biến trên khoảng (1; 2) nên g'x0 x1;2.

- Đưa về bài toán giải các bất phương trình nghiệm đúng. Từ đó tìm m1.

- Tương tự với hàm số h(x) tìm m2.

Cách giải:

Dựa vào đồ thị hàm số ta thấy f'x+20210ax+2021ba2021xb2021

Xét hàm số y=gx=fx22x+m có g'x=2x1.f'x22x+m

Vì y = g(x) nghịch biến trên khoảng (1; 2) nên

2x1.f'x22x+m0 x1;2

f'x22x+m0 x1;2

a2021x22x+mb2021 x1;2

Xét a2021x22x+m x1;2

x22x+2021am

min1;2x22x+2021am

Hàm số y=x22x+2021 đồng biến trên [1; 2] do đó min1;2x22x+2021=122.1+2021=2020

2020amma2020 1.

Tương tự x22x+mb2021 x1;2 ta có mb2021 2

Từ (1) và (2) ta có a2020mb2021m1=ba.

Chứng minh tương tự với hàm h(x) ta có m2=ba.

Vậy m1+m2=2b2a.

Chọn D.

Copyright © 2021 HOCTAP247