Cho hai hàm số f(x) = a^3 + bx^2 + cx - 1/2 và g(x) = dx^2 + ex + 1

Câu hỏi :

Cho hai hàm số fx=ax3+bx2+cx12 gx=dx2+ex+1a,b,c,d,e, biết rằng đồ thị hàm số y = f(x) và y = g(x) cắt nhau tại 3 điểm có hoành độ lần lượt là -3; -1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi 2 đồ thị đã cho có diện tích bằng

Cho hai hàm số f(x) = a^3 + bx^2 + cx - 1/2 và g(x) = dx^2 + ex + 1 (ảnh 1)

A. 5

B. 92

C. 4

D. 8

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

- Xét phương trình hoành độ, dựa vào số nghiệm của phương trình hoành độ giao điểm xác định chính xác f(x) - g(x)

- Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x) đường thẳng x = a, x = b là S=abfxgxdx.

Cách giải:

Xét phương trình hoành độ giao điểm fxgx=ax3+bdx2+cex32=0 có 3 nghiệm lần lượt là -3; -1; 1 nên ta có

ax3+bdx2+cex32=ax+3x+1x1

ax3+bdx2+cex32=ax3+3x2x3

bd=3ace=a32=3aa=12be=32ce=12


Nên fxgx=12x3+32x212x32

Hình phẳng giới hạn bởi hai đồ thị hàm số có diện tích bằng

S=31fxgxdx11fxgxdx

=3112x3+32x212x32dx1112x3+32x212x32dx


= 2 - (-2) = 4.

Chọn C.

Copyright © 2021 HOCTAP247