Cho hàm số f(x) có đạo hàm liên tục trên R và có đồ thị hàm số f'(x) như hình vẽ

Câu hỏi :

Cho hàm số f(x) có đạo hàm liên tục trên  và có đồ thị hàm số f'(x) như hình vẽ. Xét hàm số gx=fx22. Mệnh đề nào dưới đây sai?

Cho hàm số f(x) có đạo hàm liên tục trên R và có đồ thị hàm số f'(x) như hình vẽ (ảnh 1)

A. Hàm số g(x) nghịch biến trên ;2

B. Hàm số g(x) nghịch biến trên (0; 2)

C. Hàm số g(x) nghịch biến trên (-1; 0)

D. Hàm số g(x) đồng biến trên 2;+

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

- Tính đạo hàm g'(x)

- Giải phương trình g'(x) = 0

- Lập BXD g'(x)

Cách giải:

Ta có gx=fx22g'x=2x.f'x22=0

Khi đó g'x=0x=0f'x22=0x=0x22=2 (ta không xét x22=1 và qua các nghiệm của phương trình này g'(x) không đổi dấu do x = -1 là nghiệm kép của phương trình f'(x) =0)

g'x=0x=0x=±2.

Lấy x = 3 ta có g'3=6f'7>0.

Bảng xét dấu g'(x)

Cho hàm số f(x) có đạo hàm liên tục trên R và có đồ thị hàm số f'(x) như hình vẽ (ảnh 2)

Dựa vào bảng biến thiên ta thấy đáp án C sai.

Chọn C.

Copyright © 2021 HOCTAP247