Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1; 3] thỏa mãn f(1) = 2

Câu hỏi :

Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1; 3] thỏa mãn f(1) = 2 fxx+1f'x=2xf2x,x1;3. Giá trị 13fxdx bằng

A. 1 + ln3

B. 23ln3

C. 23+ln3

D. 1 - ln3

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

- Biến đổi phù hợp và sử dụng phương pháp nguyên hàm hai vế tìm f(x)

- Sử dụng giả thiết f(1) = 2 tìm hằng số C và tính 13fxdx.

Cách giải:

Ta có

fxx+1f'x=2xf2x

x+1'fxx+1f'xf2x=2x

x+1fx'=2x

 

Lấy nguyên hàm hai vế ta có:

x+1fx'dx=2xdx

x+1fx=x2+C

fx=x+1x2+C

Lại có f1=22=21+CC=0fx=x+1x2.

Vậy 13fxdx=13x+1x2dx=lnx1x31=23+ln3.

Chọn C.

Copyright © 2021 HOCTAP247