Cho hai số thực x, y thỏa mãn e^2x - e^y = -ln2 + y - 2, (x > 0)

Câu hỏi :

Cho hai số thực x, y thỏa mãn e2xex=lnx+y2,x>0. Giá trị lớn nhất của biểu thức P=yx bằng

A. e

B. 1e

C. 2+1e

D. 2-1e

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Tìm hàm đặc trưng.

- Biểu diễn y theo x

- Sử dụng phương pháp hàm số tìm GTLN của P

Cách giải:

Ta có

     e2xey=ln2+y2x>0

e2x+lnx+2=ey+y

e2x+lnx+lnex=ey+y

elne2x+lne2x=ey+y*

Xét hàm số ft=et+tf't=et+1>0 t nên hàm số đồng biến trên 

Do đó *lne2x=yy=2+lnx.

Khi đó ta có: P=yx=2+lnxx=2x+lnxx.

Ta có P'=2x2+1lnxx2=0lnx1x2=0x=1etm.

Vậy Pmax=P1e=211e=e.

Chọn A.

Copyright © 2021 HOCTAP247