Câu hỏi :

Cho số phức z=a+bia,b thỏa mãn 4zz¯15i=iz+z¯12 và môđun của số phức z12+3i đạt giá trị nhỏ nhất. Khi đó giá trị a4+b bằng 

A. 3

B. 4                 

C. 1                     

D. 2   

* Đáp án

D

* Hướng dẫn giải

Phương pháp:

- Thay z = a + bi vào biểu thức 4zz¯15i=iz+z¯12, từ đó tìm mối liên hệ giữa a, b và tìm điều kiện của b

- Tính z12+3i theo b

- Sử dụng phương pháp hàm số để tìm GTNN của biểu thức.

Cách giải:

Ta có: z=a+biz¯=abi.

Khi đó:

     4zz¯15i=iz+z¯12

4a+bia+bi15i=ia+bi+abi12

8b15=2a12

Do 2a120 a nên 8b150b158.

Ta có

z12+3i=a12+b+3i

=a122+b+32

=122a12+2b+62

=128a15+2b+62

=124b2+32b+21b158

 

Xét hàm số fx=4x2+32x+21 với x158 ta có f'x=8x+32>0,x158.

 Hàm số y = f(x) là hàm số đồng biến trên 158;+, do đó fxf158=152116.

Khi đó minz12+3i=12152116=398b=158a=12.

Vậy khi môđun của số phức z12+3i đạt giá trị nhỏ nhất thì a4+b=18+158=2.

Chọn D.

Copyright © 2021 HOCTAP247