Có bao nhiêu số nguyên a thuộc đoạn [-20; 20] sao cho hàm số

Câu hỏi :

Có bao nhiêu số nguyên a thuộc đoạn [-20; 20] sao cho hàm số y=2x+2+ax24x+5 có cực đại?

A. 18                           

B. 17                           

C. 36                           

D. 35

* Đáp án

A

* Hướng dẫn giải

TXĐ: D=.

Ta có y'=2+a.x2x24x+5.

y"=a.x24x+5x2.x2x24x+5x24x+5

y"=a.x24x+5x22x24x+5x24x+5=1x24x+5x24x+5

 

+ TH1: a=0y=2x+2 nghịch biến trên  nên hàm số không có cực đại a=0 không thỏa mãn.

+ TH2: a0a>0y'>0a<0y'<0

 Hàm số đã cho có cực đại a<0 và phương trình y' = 0 có nghiệm.

Đặt t = x - 2 ta có y'=02+a.tt2+1=0at=2t2+1

t0a2t2=4t2+4t0a24t2=4t0t2=4a24a±2*

 

 Hệ phương trình (*) có nghiệm 4a240a24>0a>2a<2.

Kết hợp điều kiện a<0,a20;20 ta có a20;2.

Mà aa20;19;18;...;3

Vậy có 18 giá trị của a thỏa mãn yêu cầu bài toán.

Chọn A.

Copyright © 2021 HOCTAP247