Cho đồ thị hàm số có 3 điểm cực trị là A, B, C. Biết M, N là hai điểm di động lần lượt thuộc các cạnh AB, AC sao cho diện tích tam giác ABC gấp 3 lần diện tích tam giác AMN. Giá tr...

Câu hỏi :

Cho đồ thị hàm số y=13x42x21 có 3 điểm cực trị là A, B, C. Biết M, N là hai điểm di động lần lượt thuộc các cạnh AB, AC sao cho diện tích tam giác ABC gấp 3 lần diện tích tam giác AMN. Giá trị nhỏ nhất của độ dài đoạn thẳng MN

A.  23

B. 233

C. 4

D. 2

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Dễ thấy ABC là tam giác đều, nên có thể giả sử tọa độ ba điểm cực trị của hàm số đã cho là A(0;1), B(-3;-4), C(3;-4)

Đặt  AM=x, AN=y (x,y>0)

Từ giả thiết suy ra  12xysin60°=1323234xy=4.

Lại có MN2=x2+y22xycos60°2xy4=4.  

GTNN của độ dài đoạn thẳng MN là 2.

Công thức tính diện tích tam giác thông thường khác:  SΔABC=13AB.AC.sinA.

Copyright © 2021 HOCTAP247