Cho hàm số y = f(x) có đạo hàm trên R thỏa mãn f(0) = 3 và

Câu hỏi :

Cho hàm số y = f(x) có đạo hàm trên  thỏa mãn f(0) = 3 fx+f2x=x22x+2,x. Tính I=02x.f'xdx.

A. I=103

B. I=43

C. I=53

D. I=23

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Sử dụng phương pháp tích phân từng phần, đặt u=xdv=f'xdx.

- Sử dụng giả thiết f(0) = 3 fx+f2x=x22x+2 tính f(2)

- Từ fx+f2x=x22x+2 lấy tích phân từ 0 đến 2 hai vế, sau đó tính 02f2xdx bằng phương pháp đưa biến vào vi phân.

Cách giải:

Đặt u=xdv=f'xdxdu=dxv=fx.

I=02x.f'xdx=xfx2002fxdx

     =2f202fxdx

Theo bài ra ta có fx+f2x=x22x+2. Thay x=0f0+f2=2f2=2f0=1.

Lấy tích phân từ 0 đến 2 hai vế ta có 02fxdx+02f2xdx=02x22x+2dx=83.

Mà 02f2xdx=02f2xd2x=20fxdx=02fxdx

202fxdx=8302fxdx=43.

Vậy I=2f202fxdx=2.143=103.

Chọn A.

Copyright © 2021 HOCTAP247