Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu S:x32+y32+z22=9 và ba điểm A1;0;0,B2;1;3,C0;2;3. Biết rằng quỹ tích điểm M thỏa mãn MA2+2MBMC=8 là một đường tròn cố định, tính bán kính  của đường tròn này. 

A. r=3

B. r = 3

C. r = 6

D. r=6

* Đáp án

D

* Hướng dẫn giải

Phương pháp:

- Gọi M(x; y; z) tính MA,MB,MC

- Từ giả thiết MA2+2MB.MC=8 chứng minh IS', xác định tâm I' và bán kính R' của mặt cầu (S').

- Xác định tâm I và bán kính R của mặt cầu (S).

- Chứng minh II'<R+R'SS'= một đường tròn và M thuộc đường tròn đó.

- Sử dụng định lí Pytago tính bán kính của đường tròn.

Cách giải:

Gọi M(x; y; z) Ta có MA=1x;y;zMB=2x;1y;3zMC=x;2y;3z.

MA2+2MB.MC=8

1x2+y2+z22x2x+21y2y+23z3z=8

x2+y2+z22x+14x+2x2+223y+y229z2=8

x2+y2+z22x+14x+2x2+46y+2y218+2z2=8

3x3+3y2+3z26x6y21=0

x2+y2+z22x7y7=0 S'

MS' là mặt cầu tâm I'(1; 1; 0), bán kính R'=1+1+7=3.

Hơn nữa, MS có tâm I(3; 3; 2) bán kính R = 3

Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (ảnh 1)

Ta có: II'=22+22+22=23<R+R'.

M=SS' là một đường tròn có bán kính r = AH

Dễ thấy ΔAII' cân tại A nên H là trung điểm của II'IH=12II'=3.

Vậy r=AH=AI2IH2=3232=6.

Chọn D.

Copyright © 2021 HOCTAP247