Trong tất cả các khối chóp tứ giác đều ngoại tiếp mặt cầu bán kính bằng a, thể tích V của khối chóp có thể tích nhỏ nhất là:
A.
B.
C.
D.
D
Phương pháp:
- Giả sử ta có khối chóp tứ giác đều S.ABCD. Xác định tâm mặt cầu nội tiếp khối chóp S.ABCD.
- Đặt SO = x > a tính SI, SH theo x, a.
- Sử dụng tính OM theo x, a từ đó tính theo x, a.
- Tính theo x, a.
- Sử dụng phương pháp hàm số tìm GTNN của .
Cách giải:
Giả sử ta có khối chóp tứ giác đều S.ABCD.
Gọi .
Gọi M, N lần lượt là trung điểm của AB, AC Trong (SMN) dựng tia phân giác của góc cắt SO tại là tâm mặt cầu nội tiếp khối chóp S.ABCD.
Kẻ ta có r = IH = IO = a là bán kính mặt cầu nội tiếp khối chóp S.ABCD.
Đặt
Áp dụng định lý Pytago ta có
Vì
Xét hàm số ta có
Vậy , đạt được khi SO = 4a.
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247