Biết đồ thị hàm số y = ax^3 + bx^2 + cx + d cắt trục hoành tại ba điểm

Câu hỏi :

Biết đồ thị hàm số y=ax3+bx2+cx+d cắt trục hoành tại ba điểm phân biệt với hoành độ dương x1,x2,x3 đồng thời

y''(1) = 0. Giá trị lớn nhất của biểu thức P=x3+x2x3+x1x2x33 là: 

A. 5                             

B.                            

C.                            

D.

* Đáp án

C

* Hướng dẫn giải

Vì đồ thị hàm số y=ax3+bx2+cx+d cắt trục hoành tại ba điểm phân biệt với hoành độ dương x1,x2,x3 nên phương trình ax3+bx2+cx+d=0 có 3 nghiệm dương phân biệt x1,x2,x3.

Áp dụng định lí Vi-ét ta có: x1+x2+x3=bax1x2+x2x3+x3x1=cax1x2x3=da.

Ta có: y'=3ax2+2bx+c,y"=6ax+2b.

Vì y"1=06a+2b=0b=3ax1+x2+x3=ba=3.

Ta có:

P=x3+x2x3+x1x2x33

P=x3+124x2x3+1416x1.4x2.x33

Px3+12.4x2+x32+14.16x1+4x2+x33

Px3+4x2+x34+16x1+4x2+x312

P12x3+12x2+3x3+16x1+4x2+x312

P16x1+16x2+16x312=43x1+x2+x3

P43.3=4

Vậy Pmin=4.

Chọn C.

Copyright © 2021 HOCTAP247