Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính

Câu hỏi :

Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính đáy nằm trên mặt cầu (S). Thể tích lớn nhất của khối nón (N) là:

A. 32R327

B. 32πR327

C. 32R381

D. 32πR381

* Đáp án

D

* Hướng dẫn giải

Phương pháp:

- Gọi h là chiều cao của hình nón, r là bán kính đường tròn đáy của hình nón. Sử dụng định lí Pytago biểu diễn r theo h, R.

- Thể tích khối nón có chiều cao h bán kính đáy r là V=13πr2h.

- Sử dụng phương pháp hàm số để tìm GTLN của thể tích.

Cách giải:

Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính (ảnh 1)

Gọi h là chiều cao của hình nón. Để thể tích khối nón là lớn nhất thì hiển nhiên h > R.

Gọi r là bán kính đường tròn đáy của hình nón.

Ta có IH=SHSI=hR.

Áp dụng định lí Pytago ta có r=R2hR2=2hRh2.

 Thể tích khối nón là V=13πr2h=13π2hRh2.h=π32Rh2h3.

Xét hàm số fh=h3+2Rh2 với h > R ta có f'h=3h2+4Rh=0h=0ktmh=4R3tm.

Vmax=π3.f4R3=π3.2R.16R2964R327=32πR381.

Chọn D.

Copyright © 2021 HOCTAP247