Cho n là số tự nhiên có bốn chữ số bất kì. Gọi S là tập hợp tất cả các

Câu hỏi :

Cho n là số tự nhiên có bốn chữ số bất kì. Gọi S là tập hợp tất cả các số thực a thỏa mãn 3α=n. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một số tự nhiên bằng:

A. 14500

B. 13000

C. 12500

D. 400

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Tìm số các số tự nhiên có 4 chữ số, từ đó suy ra số phần tử của tập hợp S và số phần tử của không gian mẫu.

- Gọi A là biến cố: “chọn được một số tự nhiên”.

- Từ giả thiết 3α=n tìm n cho n1000;9999, từ đó tìm α thỏa mãn.

- Tính xác suất của biến cố.

Cách giải:

Vì n là số tự nhiên có bốn chữ số bất kì nên 1000n9999 và có 99991000+1=9000 số tự nhiên có 4 chữ số.

Theo bài ra ta có 3α=nα=log3n.

Vì có 9000 số tự nhiên có 4 chữ số nên tập hợp S có 9000 phần tử  Số phần tử của không gian mẫu là

nΩ=9000.

Gọi A là biến cố: “chọn được một số tự nhiên”.

Ta có

1000n9999log31000log3nlog39999

6,29log3n8,386,29α8,38

Mà αα7;8nA=2.

Vậy xác suất của biến cố A PA=nAnΩ=29000=14500.

Chọn A.

Copyright © 2021 HOCTAP247