Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình

Câu hỏi :

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho phương trình 4xm2x+2m227=0 có hai nghiệm phân biệt. Hỏi S có bao nhiêu phần tử?

A. 4.                            

B. 3.                            

C. 2.                            

D. 1. 

* Đáp án

C

* Hướng dẫn giải

Phương pháp:

- Đặt ẩn phụ t=2x>0, đưa phương trình về phương trình bậc hai ẩn t.

- Để phương trình ban đầu có hai nghiệm phân biệt thì phương trình bậc hai ẩn t có 2 nghiệm dương phân biệt.

- Sử dụng định lí Vi-ét

Cách giải:

Đặt t=2x>0, phương trình đã cho trở thành t22mt+2m227=0*.

Để phương trình ban đầu có hai nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.

Δ'=m22m2+27>0S=2m>0P=2m227>033<m<33m>0m>362m<362362<m<33.

Mà S là tập hợp tất cả các giá trị nguyên của tham số m nên S=4;5.

Vậy S có 2 phần tử.

Chọn C.

Copyright © 2021 HOCTAP247