Cho hàm số f(x) liên tục trên [-1; 1] thỏa mãn f(x) - 1 = tích phân từ -1 đến 1

Câu hỏi :

Cho hàm số f(x) liên tục trên [-1; 1] thỏa mãn fx1=11x+etftdt. Tích phân I=11exfxdx bằng: 

A. I=e+3e2+e3

B. I=e+3e2e+3

C. I=e2+3e2+e3

D. I=2ee2e+3

* Đáp án

C

* Hướng dẫn giải

Ta có:

fx1=11x+etftdtfx1=x11ftdt+11etftdt *

Giả sử 11ftdt=a,11etftdt=bfx1=xa+bfx=ax+b+1.

Thay vào (*) ta có:

ax+b=x11at+b+1dt+11etat+b+1dt

ax+b=xat22+bt+t11+11etat+b+1dt

ax+b=xa2+b+1a2+b+1+at+b+1et11a11etdt

ax+b=x2b+2+a+b+1ea+b+1e1aee1

ax+b=x2b+2+b+1e+2ab1e1

a=2b+2b=b+1e+2ab1e1a=2b+2b=b+1e+3b+3e1

a=2b+2b=e+3eb+e+3ea=2e2e2e1b=e+3e1e3e=e2+3e2+e3


 

Vậy 11etftdt=11exfxdx=e2+3e2+e3=I.

Chọn C.

Copyright © 2021 HOCTAP247