Cho hai số thực a, b thỏa mãn và . Giá trị lớn nhất của biểu thức P=2a+4b-3 là

Câu hỏi :

Cho hai số thực a, b thỏa mãn a2+b2>1  loga2+b2a+b1 . Giá trị lớn nhất của biểu thức P=2a+4b3  

A.10 .

B. 102 .

C. 210 .

D. 110 .

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Do a2+b2>1  nên từ  loga2+b2a+b1loga2+b2a+bloga2+b2a2+b2

a+ba2+b2>1.

Suy ra:  a2+b2>1a122+b12212

Khi đó: P=2a+4b3=2a12+4b1222+42.a122+b122

 20.12=10. (Áp dụng BĐT Bunhiacốpxki)

Dấu “=” xảy ra khi: a2+b2>1a122=b124>0a122+b122=12a=12+110b=12+210 .

Vậy Pmax=10  khi a=12+110b=12+210

Copyright © 2021 HOCTAP247