Đường thẳng nối hai điểm cực trị của đồ thị hàm số

Câu hỏi :

Đường thẳng nối hai điểm cực trị của đồ thị hàm số y=mx2+42mx62x+9  cách gốc tọa độ một khoảng lớn nhất khi m bằng:

A. 12.

B. -12.

C. 2

D. 1

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Để đồ thị có hai điểm cực trị thì phương trình y'=0 có hai nghiệm phân biệt. Ta tìm được điều kiện m>0 hoặc m>1433 . Khi đó đường thẳng nối hai điểm cực trị có phương trình là:

y=mx2+42mx6'2x+9'=mx+2m.

Khoảng cách từ gốc tọa độ đến đường thẳng nối hai điểm cực trị là:h=2mm2+1=2m2m2+1m2+1h2=m24m+4h21m2+4m+h24=0   *

Khi  thì . Khi thì (*) là phương trình bậc hai của m. Điều kiện cần và đủ để phương trình này có nghiệm làΔ'=4h21h240h2h250h5 

Khi  h=1thì m=34  (thỏa mãn).

Copyright © 2021 HOCTAP247