Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, AD

Câu hỏi :

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, AD và O là trọng tâm tam giác BCD. Tính tỉ số thể tích VOMNPVABCD.

A. 16

B. 18

C. 112

D. 14

* Đáp án

B

* Hướng dẫn giải

Phương pháp:

So sánh chiều cao và diện tích đáy của hai khối chóp.

Cách giải:

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, AD (ảnh 1)

ΔMNPΔBCD theo tỉ số k=12 nên SMNPSBCD=k2=14.

Ta có MNP//BCDdO;MNP=dB;MNP.

Lại có BAMNP=MdB;MNPdA;MNP=BMAM=1dB;MNP=dA;MNP=12dA;BCD.

Vậy VOMNPVABCD=dO;MNPdA;BCD.SMNPSBCD=12.14=18.

Chọn B.

Copyright © 2021 HOCTAP247