Gọi m là số thực dương sao cho đường thẳng

Câu hỏi :

Gọi m là số thực dương sao cho đường thẳng y=m+1  cắt đồ thị hàm số y=x43x22  tại hai điểm A, B thỏa mãn tam giác OAB vuông tại O (O là gốc tọa độ). Kết luận nào sau đây đúng?

A.m74;94.

B. m12;34.

C.m34;54.

D. m54;74.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương trình hoành độ giao điểm x43x22=m+1x43x23m=0 .

Đặtx2=t,t0 , ta có phương trình t23tm3=0   *

Theo giả thiết ta có m > 0 nên phương trình luôn có hai nghiệm trái dấu.

Suy ra đường thẳng y=m+1  luôn cắt đồ thị hàm số y=x43x22  tại hai điểm A, B.

A, B đối xứng với nhau qua Oy nên Ax;m+1  Bx;m+1 .

Tam giác OAB vuông tại OOA.OB=0x2=m+12 .

Thay x2=m+12  vào phương trình x43x23m=0  ta được m4+4m3+3m23m5=0

m1m3+5m2+8m+5=0m=1

Copyright © 2021 HOCTAP247