Cho đều cạnh a và nội tiếp trong đường tròn tâm O, AD là đường kính của đường tròn tâm O. Thể tích của khối tròn xoay sinh ra khi cho phần tô đậm quay quanh đường thẳng AD bằng:

Câu hỏi :

Cho  đều cạnh a và nội tiếp trong đường tròn tâm O, AD là đường kính của đường tròn tâm O. Thể tích của khối tròn xoay sinh ra khi cho phần tô đậm quay quanh đường thằng AD bằng
Cho   đều cạnh a và nội tiếp trong đường tròn tâm O, AD là đường kính của đường tròn tâm O. Thể tích của khối tròn xoay sinh ra khi cho phần tô đậm quay quanh đường thẳng AD bằng: (ảnh 1)

A. π324a3

B. 20π3217a3

C. 23π3216a3


D. 4π327a3


* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Gọi thể tích của khối tròn xoay sinh ra do phần tô đậm quay quanh đường thẳng ADV1.

Gọi thể tích của khối tròn xoay sinh ra do hình tam giác ABC quay quanh đường thẳng ADV2.

Gọi thể tích của khối tròn xoay sinh ra do hình tròn đường kính AD quay quanh đường thẳng ADV3.

Khi đó: V1=V3V2=43π.OA313π.HC2.AH

=43.π.a33313.π.a22.a32=23πa33216

Copyright © 2021 HOCTAP247