Cho hàm số y=f(x) có đạo hàm trên R và có đồ thị là đường cong như hình vẽ. Đặt g(x)=3f(f(x)+4 . Số điểm cực trị của hàm số g(x) là

Câu hỏi :

Cho hàm số y=fx  có đạo hàm trên R và có đồ thị là đường cong như hình vẽ. Đặt gx=3ffx+4 . Số điểm cực trị của hàm số  
Cho hàm số y=f(x)  có đạo hàm trên R  và có đồ thị là đường cong như hình vẽ. Đặt g(x)=3f(f(x)+4 . Số điểm cực trị của hàm số  g(x) là (ảnh 1)

A. 10

B. 8

C. 6

D. 2

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Cho hàm số y=f(x)  có đạo hàm trên R  và có đồ thị là đường cong như hình vẽ. Đặt g(x)=3f(f(x)+4 . Số điểm cực trị của hàm số  g(x) là (ảnh 2)

Ta có: g'x=3f'fx.f'x .

g'x=03f'fx.f'x=0

f'fx=0f'x=0fx=0fx=ax=0x=a2<a<3

Ta có f(x)=0 có 3 nghiệm đơn phân biệt x1,x2,x3  khác 0 và a.

2<a<3  nên fx=a  có 3 nghiệm đơn phân biệt x4,x5,x6  khác x1,x2,x3,0,a

Suy ra g'x=0  có 8 nghiệm đơn phân biệt.

Do đó hàm số gx=3ffx+4  có 8 điểm cực trị.

Copyright © 2021 HOCTAP247