Trong không gian Oxyz, cho mặt cầu (S): (X-1)^2+(Y-2)^2+(Z-2)^2=9

Câu hỏi :

Trong không gian Oxyz, cho mặt cầu S:x12+y22+z22=9 và hai điểm M4;4;2,N6;0;6 . Gọi E là điểm thuộc mặt cầu(S)  sao cho EM+EN đạt giá trị lớn nhất. Phương trình tiếp diện của mặt cầu (S) tại E

A. x2y+2z+8=0

B. 2x+y2z9=0

C. 2x+2y+z+1=0

D. 2x2y+z+9=0

* Đáp án

* Hướng dẫn giải

Mặt cầu (S) có tâm I1;2;2  và bán kính R=3.

Gọi K là trung điểm của MNK5;2;4  K nằm ngoài mặt cầu (S).

Do đó IK=4;4;2, MN=2;4;4, MN=6  IKMN .

Ta cóEM+EN2EM2+EN2=2EK2+MN22=2EK2+36 .

Bởi vậy  đạt giá trị lớn nhất khi và chỉ khi EM=EN EK lớn nhất.

IKMN  nên EM=EN thì E thuộc đường thẳng IK:x=1+2ty=22tz=2+t  .

Tọa độ giao điểm E của đường thẳng IK với mặt cầu (S) ứng với t là nghiệm phương trình:1+2t12+22t22+2+t22=9t=±1

.

Như vậyE13;0;3  hoặc E21;4;1 .

Ta có E1K=3, E2K=9 . Suy ra E=1;4;1IE=2;2;1  , nên phương trình tiếp diện của mặt cầu (S) tại E có phương trình: 2x+1+2y41z1=0   hay 2x2y+z+9=0 .

Copyright © 2021 HOCTAP247