Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông với đáy, góc SBD=60 độ . Tính khoảng cách d giữa hai đường thẳng AB và SO.

Câu hỏi :

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông với đáy, góc SBD^=60o . Tính khoảng cách d giữa hai đường thẳng AB và SO.

A.  d=a33.

B. d=a64.

C.  d=a22.

D.  d=a55.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có ΔSAB=ΔSAD  cgc  , suy ra SB=SD

Lại có SBD^=60o , suy ra ΔSBD   đều cạnh SB=SD=BD=a2

Tam giác vuông SAB, có SA=SB2AB2=a

Gọi E là trung điểm AD, suy ra OE//AB  và AEOE

Do đó dAB,SO=dAB,SOE=dA,SOE

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông với đáy, góc SBD=60 độ . Tính khoảng cách d giữa hai đường thẳng AB và SO. (ảnh 1)

Kẻ AKSE

Khi đó dA,SOE=AK=SA.AESA2+AE2=a55.

Copyright © 2021 HOCTAP247