Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong

Câu hỏi :

Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong hình vẽ bên dưới. Giá trị lớn nhất của hàm số g(x)=12f(2x)+32x3+12x212x+2021 trên đoạn 32;  12 bằng

Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong (ảnh 1)

A. 12f(1)+2026

B. 12f(3)+1958

C. 12f(1)+2022

D. f(-1).

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Ta có g'x=24f'2x+96x2+24x12=122f'2x+8x2+2x1

g'x=0122f'2x+8x2+2x1=02f'2x+8x2+2x1=0*

Đặt t=2x,x32;12t3;1.

Khi đó phương trình (*) trở thành phương trình sau:

2f't+2t2+t1=0f't=t212t+12**

Ta có đồ thị như sau:

Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong (ảnh 2)


f't=0t=3t=1t=1x=32x=12x=12

Ta có bảng biến thiên như sau:

Cho hàm số f(x), đồ thị của hàm số y = f'(x) là đường cong trong (ảnh 3)

Dựa vào bảng biến thiên và đồ thị hàm số ta có giá trị lớn nhất của hàm số g(x) đạt tại x=12g12=12f1+2026.

Copyright © 2021 HOCTAP247