Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên

Câu hỏi :

Cho  hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới f(1) = 0; f''23=0 f23=2027. Biết hàm số f(x) đạt cực trị tại hai điểm x1,x2 thỏa mãn 3x26x1=372. Gọi S1S2 là diện tích của hai hình phẳng được gạch trong hình bên dưới. Tỉ số S1S2 thuộc khoảng nào dưới đây?

A. (7,1;7,3).

B. (6,5;6,7).

C. (6,7;6,9).

D. (6,9;  7,1).

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Vì y = f(x) là hàm số bậc ba có f"23=0x=23 là hoành độ điểm uốn, do đó: x1+x2=2xu=43

Mặt khác 3x26x1=372 hay x1+x2=433x26x1=372x1=273x2=2+73

Suy ra f'x=kxx1xx2=kx243x13, với k > 0

fx=k3x32x2x+C, thay f(1) = 0 ta được C=2fx=k3x32x2x+2.

Khi đó S1=k32731x32x2x+2dx;S2=k312+73x32x2x+2dx. Do đó

S1S2=2731x32x2x+2dx12+73x32x2x+2dx6,856,7;6,9.

Copyright © 2021 HOCTAP247