Có bao nhiêu số nguyên dương a thỏa mãn

Câu hỏi :

Có bao nhiêu số nguyên dương a thỏa mãn  1+ln2a  +lna1+(a3)2+a31  ?

A. 4

B. 1

C. 3

D. 2

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Điều kiện: a > 0

Vì 1+ln2a>lnalna1+ln2alna>0.

Do đó 1+ln2a+lna1+a32+a311+a32+a31+ln2alna1

1+a32+a31+lna2+lna.1

Xét hàm số ft=t+1+t2,t;f't=1+t1+t2=t+1+t21+t2>0,t. Suy ra hàm số f'(t) đồng biến trên 

Bất phương trình 1fa3flnaa3lnaa3+lna0.

Xét hàm số ga=a3+lna,a0;+;g'a=1+1a>0,a>1.

Hàm số g(a) đồng biến trên khoảng 1;+. Do đó phương trình g(a) = 0 có nhiều nhất 1 nghiệm.

Mặt khác g2.g3=ln21ln3<0, suy ra a02;3 để ga0=0

Do đó: ga0aa0a0;a0a=1a=2.

Copyright © 2021 HOCTAP247