Cho hàm số f(x) thỏa mãn f'(x)[f(x)]^2018=xe^x với mọi

Câu hỏi :

Cho hàm số f(x) thỏa mãn f'x.fx2018=x.ex  với mọi x  và f(1)=1. Hỏi phương trình fx=1e  có bao nhiêu nghiệm?

A. 0

B. 1

C. 3

D. 2

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có: f'xfx2018dx=xexdxfx2018dfx=x1.ex+C

12019.fx2019=x1.ex+Cfx2019=2019x1.ex+2019C

Do f1=1  nên 2019C=1  hay fx2019=2019x1.ex+1 .

Ta có: g'x=2019x.ex; g'x=0x=0;g0=2019+1+1e2019<0limx+gx=+; limxgx=1+1e2019>0 .

Xét hàm số  trên .

Ta có .

Bảng biến thiên của hàm số:

Cho hàm số  f(x) thỏa mãn f'(x)[f(x)]^2018=xe^x  với mọi  (ảnh 1)
 

Do đó phương trình fx=1e  có đúng 2 nghiệm.

Copyright © 2021 HOCTAP247