Cho hàm số f(x)=x^3+x^2+mx với tham số thực m. Biết

Câu hỏi :

Cho hàm số fx=x3+x2+mx  với tham số thực m. Biết rằng hàm số có một giá trị cực trị là y = 1  . Giá trị cực trị còn lại của hàm số bằng

A. -1

B. 527

C. 13

D.0

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Tập xác định: D = R.

Ta có: f'x=3x2+2x+m . Xét f'x=03x2+2x+m=0 .

Để hàm số có cực trị thì Δ'=13m>0m<13 * .

Gọi x0  là điểm cực trị của hàm số mà giá trị cực trị tương ứng là 1. Ta có:

f'x0=3x02+2x0+m=0fx0=x03+x02+mx0=1m=3x02+2x0x03+x023x02+2x0x0=1m=1x0=1.

Với m = -1  hàm số trở thành:fx=x3+x2x

f'x=3x2+2x1=0x=1x=13f1=1f13=527.

Vậy giá trị cực trị còn lại của hàm số là 527 .

Copyright © 2021 HOCTAP247