Cho hàm số y=x-2/x+1 có đồ thị (C). Từ một điểm A trên trục

Câu hỏi :

Cho hàm số y=x2x+1  có đồ thị (C) . Từ một điểm A trên trục hoành sao cho từ A có thể kẻ được 2 tiếp tuyến tới đồ thị (C)  . Khoảng cách từ gốc tọa độ đến đường thẳng đi qua hai tiếp điểm của đồ thị đạt giá trị lớn nhất bằng

A. 10

B. 26

C. 12

D.6

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có tiếp điểm Mx0;y0  nên phương trình tiếp tuyến:y=3x0+12xx0+x02x0+1

Gọi điểm Am;0  thay vào tiếp tuyên ta có: x024x0+3m2=0x024x0=23m .

Lại có y0=x02x0+1=13x0+1=13x05x0+1x05=m+x04m+1x0y0m+1+m4=0 .

Nên phương trình đường thẳng là xym+1+m4=0d0;Δ=m41+m+1226 .

Copyright © 2021 HOCTAP247