Có bao nhiêu số nguyên m để GTNN của hàm số y=f(x)=|-x^4+8x^2+m| trên đoạn [-1;3] đạt giá trị nhỏ nhất.

Câu hỏi :

Có bao nhiêu số nguyên m để GTNN của hàm số y=fx=x4+8x2+m  trên đoạn1;3  đạt giá trị nhỏ nhất.

A. 23.

B. 24.

C. 25

D. 26.

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Ta có: y=fx=x4+8x2+m=x48x2m=x24216m.

Đặt t=x24,  vì x1;3t0;25.

Khi đó y=gt=t16m.

Ta có min1;3fx=min0;25gt=minm9;m+16.

Nếu m90m9,  khi đó min1;3fx=m90,  khi đó minmin1;3fx=0,  khi  m=9

Nếu m+160m16, minx1;3fx=m160, khi m=-16

Nếu m9m+16<016<m<9,  khi đó minx1;3fx=0,   khi đó minmin1;3fx=0

Vậy minmin1;3fx=0,  khi  16m9.  

 nên có 26 số nguyên m thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247