Có bao nhiêu số nguyên M thuộc khoảng (-10;10) để hàm số y=|2x^2=2mx+3| đồng biến trên (1;+ vô cực) ?

Câu hỏi :

Có bao nhiêu số nguyên M thuộc khoảng 10;10  để hàm số y=2x22mx+3  đồng biến trên 1;+ ?

A. 12.

B. 11.

C. 8.

D. 7.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Xét hàm số fx=2x32mx+3  trên 1;+ .

Ta có: f'x=6x22m=0 . Khi đó Δ'=12m .

TH1: Hàm số fx=2x32mx+3  luôn đồng biến và không âm trên 1;+

f'x0,x1;+f106x22m0,x1;+2.132m.1+30

mmin1;+3x2m52m3m52m52

mm10;10m9;8;7;6;5;4;3;2;1;0;1;2 .

TH2: Hàm số fx=2x32mx+3  luôn nghịch biến và không dương trên 1;+

f'x0,x1;+f106x22m0,x1;+2.13+2m.1+30mmax1;+3x2m52

 (không tồn tại m).

Vậy có tất cả 12 giá trị của m thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247