Cho phương trình log3(3x^2 - 6x + 6) = 3^y^2 + y^2 - x^2 - 1. Hỏi có bao nhiêu

Câu hỏi :

Cho phương trình log33x26x+6=3y2+y2x2+2x1. Hỏi có bao nhiêu cặp x;y;0<x<2021;y thỏa mãn phương trình đã cho

A. 5                             

B. 6                             

C. 4                             

D. 7

* Đáp án

B

* Hướng dẫn giải

Chọn B.

log33x26x+6=3y2+y2x2+2x1log3x22x+2+x22x+2=y2+3y2

log3x22x+2+3log3x22x+2=y2+3y2.

Xét hàm số ft=t+3t;f't=1+3tln3>0,t nên hàm số đồng biến trên . Vậy phương trình đã cho tương đương với y2=log3x22x+2y2=log3x12+1.

Vì 0 < x < 2021 nên 1<x1<20200<x12<202021<x12+1<20202+1

0<y2<log320202+1y00<y<log320202+13,7.

y nên y1;2;3. Với mỗi giá trị của y > 0. Ta có 2 giá trị của x thỏa mãn x=1±3y21.

Vậy có 6 cặp số (x; y) thỏa mãn đề bài.

Copyright © 2021 HOCTAP247