Cho hình lăng trụ ABC.A'B'C' . Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA', BB', CC' sao cho AM=2MA',NB'=2NB,PC=PC' . Gọi V1,V2 lần lượt là thể tích của hai khối đa diện AB...

Câu hỏi :

Cho hình lăng trụ ABC.A'B'C' . Gọi M, N, P lần lượt là các điểm thuộc các cạnh AA', BB', CC' sao cho AM=2MA', NB'=2NB, PC=PC' . Gọi V1, V2  lần lượt là thể tích của hai khối đa diện ABCMNPA'B'C'MNP . Tính tỷ số V1V2 .

A.  V1V2=2

B.  V1V2=12

C.  V1V2=1

D.  V1V2=23

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Đặt V=VABC.A'B'C'

Ta có VABCMNP=VP.ABNM+VP.ABC  

VP.ABC=13dP,(ABC).SΔABC=16dC;(ABC).SΔABC=V6 ŸSABNMSABB'A'=AM+BNAA'+BB'=23AA'+13BB'AA'+BB'=12VP.ABNM=12VC.ABB'A'

VC.ABB'A'=23V  suy ra VP.ABNM=12.23V=V3 .

Khi đó VABCMNP=V6+V3=V2 .

Vậy V1V2=V2:V2=1 .

Copyright © 2021 HOCTAP247