Cho hàm số h=2 căn bậc 3 của V liên tục và có đạo hàm trên R , có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1] . Phương trình f(x^3-3x^2)=3 căn m+4 căn (1-m) có bao nhiê...

Câu hỏi :

Cho hàm số h=2V3  liên tục và có đạo hàm trên R, có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc 0;1 . Phương trình fx33x2=3m+41mcó bao nhiêu nghiệm thực
Cho hàm số h=2 căn bậc 3 của V  liên tục và có đạo hàm trên R , có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1] . Phương trình f(x^3-3x^2)=3 căn m+4 căn (1-m)  có bao nhiêu nghiệm thực (ảnh 1)

A. 2

B. 3

C. 5

D. 9

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Đặt k=3m+41m3k5 .

Đặt tx=x33x2 , có t'x=3x26x;x=0x=0  hoặc x=2.

Bảng biến thiên như hình bên.

Cho hàm số h=2 căn bậc 3 của V  liên tục và có đạo hàm trên R , có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1] . Phương trình f(x^3-3x^2)=3 căn m+4 căn (1-m)  có bao nhiêu nghiệm thực (ảnh 2)

Phương trình trở thành ft=k  với k3;5

do thit=a>0BBT1 nghiem xt=b4<b<0BBT3 nghiem xt=c<4BBT1 nghiem x

Vậy phương trình đã cho có 5 nghiệm x.  

Copyright © 2021 HOCTAP247