Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a cạnh bên hợp với mặt

Câu hỏi :

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a cạnh bên hợp với mặt đáy góc 600. Hình nón có đỉnh S đáy là đường tròn nội tiếp tứ giác ABCD có diện tích xung quanh là

A. S=7πa24

B. S=2πa2

C. S=πa2

D. S=πa22

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a cạnh bên hợp với mặt (ảnh 1)

Gọi O=ACBD.

Theo bài ra, S.ABCD là hình chóp đều nên SOABCD và ABCD là hình vuông cạnh a.

Góc giữa cạnh bên và mặt đáy bằng 600. Tức là: SCO^=600.

Xét tam giác SOC vuông tại O có: SO=OC.tan600=a62.

Gọi I là trung điểm của CD. Xét tam giác SOI vuông tại O ta có:

SI=SO2+OI2=a622+a22=a72.

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a cạnh bên hợp với mặt (ảnh 2)

Hình nón có đỉnh S đáy là đường tròn nội tiếp tứ giác ABCD cạnh a có bán kính bằng r=a2 và đường sinh SI=a72.

Diện tích xung quanh của hình nón đã cho bằng: Sxq=πrl=π.a2.a72=πa274.

Copyright © 2021 HOCTAP247