Người ta sản xuất một vật lưu niệm (N) bằng thủy tinh trong suốt có dạng khối tròn xoay mà thiết kế qua trục của nó là một hình thang cân (xem hình vẽ). Bên trong (N) có hai khối c...

Câu hỏi :

Người ta sản xuất một vật lưu niệm (N) bằng thủy tinh trong suốt có dạng khối tròn xoay mà thiết kế qua trục của nó là một hình thang cân (xem hình vẽ). Bên trong (N) có hai khối cầu ngũ sắc với bán kính lần lượt là R=3cm , r=1cm  tiếp xúc với nhau và cùng tiếp xúc với mặt xung quanh của (N), đồng thời hai khối cầu lần lượt tiếp xúc với hai mặt đáy của (N). Tính thể tích của vật lưu niệm đó

Người ta sản xuất một vật lưu niệm (N) bằng thủy tinh trong suốt có dạng khối tròn xoay mà thiết kế qua trục của nó là một hình thang cân (xem hình vẽ). Bên trong (N) có hai khối cầu ngũ sắc với bán kính lần lượt là (ảnh 1)

A. 485π6cm3 .

B. 81πcm3 .

C. 72πcm3 .

D.7289πcm3 .

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Người ta sản xuất một vật lưu niệm (N) bằng thủy tinh trong suốt có dạng khối tròn xoay mà thiết kế qua trục của nó là một hình thang cân (xem hình vẽ). Bên trong (N) có hai khối cầu ngũ sắc với bán kính lần lượt là (ảnh 2)

Giả sử thiết diện là hình thang ABPQ

Gọi I, K lần lượt là tâm của đường tròn nhỏ và to.

Gọi M, N là hình chiếu của I, K lên một cạnh bên, điểm E=IKMN  (hình vẽ) trong đó IK=r+R=4cm .

Ta có:  EIEK=IMKN=rR=13EIEI+IK=13EIEI+4=13

EI=2sinIEM^=IMEI=12IEM^=30°

Suy ra  EBO^=60°KBO^=30°OB=KOcot30°=33

Mặt khác ,  EH=IEIH=21=1cm

Thể tích của vật thể cần tìm là: V=13πOB2.EO13πHP2.EH=728π9

Copyright © 2021 HOCTAP247