Cho hàm số y = f(x) là hàm đa thức bậc bốn. Đồ thị hàm y = f'(x - 1) được

Câu hỏi :

Cho hàm số y = f(x) là hàm đa thức bậc bốn. Đồ thị hàm y = f'(x - 1) được cho trong hình vẽ bên. Hàm số gx=f2x+2x2+2x đồng biến trên khoảng nào sau đây?
Cho hàm số y = f(x) là hàm đa thức bậc bốn. Đồ thị hàm y = f'(x - 1) được (ảnh 1)

A. (-2; -1)

B. (1; 2)

C. (0; 1)

D. (-1; 0)

* Đáp án

D

* Hướng dẫn giải

Ta có:

     gx=f2x+2x2+2x

g'x=2f'2x+4x+2

Cho g'x=0f'2x+2x+1=0f'2x=2x1.

Đặt 2x = X - 1 ta có f'X1=X+11=X, khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f'(X - 1) và Y = -X

Ta có đồ thị hàm số:

Cho hàm số y = f(x) là hàm đa thức bậc bốn. Đồ thị hàm y = f'(x - 1) được (ảnh 2)

Dựa vào đồ thị fX1=XX=2X=1X=22x+1=22x+1=12x+1=2x=32x=1x=12, qua các nghiệm này g'(x) đổi dấu.

Ta có g'0=2f'0+2>0 (do f'0>0) nên ta có BXD g'(x) như sau:

Cho hàm số y = f(x) là hàm đa thức bậc bốn. Đồ thị hàm y = f'(x - 1) được (ảnh 3)

Vậy hàm số gx=f2x+2x2+2x đồng biến trên khoảng (-1; 0).

Chọn D.

Copyright © 2021 HOCTAP247