Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A

Câu hỏi :

Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, cạnh bên SD vuông góc với mặt phẳng đáy. Cho biết AB=AD=a,CD=2a, góc giữa hai mặt phẳng (SAB) và (SBC) bằng 300. Tính thể tích khối chóp đã cho. 

A. 2a3

B. a3

C. 3a32

D. a32

* Đáp án

D

* Hướng dẫn giải

 

Cho khối chóp S.ABCD có đáy ABCD là hình thang vuông tại A (ảnh 1)

Trong (SAD) kẻ DHSAHSA, trong (SBD) kẻ DKSBKSB.

Ta có:

SAADABSDABSADABDH

DHABDHSADHSAB1

 

Gọi E là trung điểm của CDABED là hình vuông nên BE=AD=a=12CDΔBCD vuông tại B.

Ta có:

BCBDBCSDBCSBDBCDK

DKBCDKSBDKSBC2

 

Từ (1) và 2SAB;SBC=DH;DK=300

DHSABDHHKΔDHK vuông tại HHDK=300

Đặt SD = x (x > 0) áp dụng hệ thức lượng trong tam giác vuông ta có:

DH=AD.SDAD2+SD2=a.xa2+x2

DK=BD.SDBD2+SD2=a2.a2a2+x2

Xét tam giác vuông DHK ta có: cosHDK=DHDKaxa2+x2:a2x2a2+x2=32

2a2+x22a2+2x2=32

42a2+x2=32a2+2x2

8a2+4x2=6a2+6x2

2a2=2x2x=a

Ta có SABCD=12AB+CD.AD=12a+2a.a=3a22.

Vậy VS.ABCD=13SD.SABCD=13.a.3a22=a32.

Chọn D.

Copyright © 2021 HOCTAP247