Có bao nhiêu giá trị thực của y để với mỗi y tồn tại đúng 2 giá trị

Câu hỏi :

Có bao nhiêu giá trị thực của y để với mỗi y tồn tại đúng 2 giá trị thực của x sao cho ln4x2=xy+y? 

A. 1

B. Vô số                      

C. 2                             

D. 3

* Đáp án

C

* Hướng dẫn giải

ĐKXĐ: 4x2>0x0.

Coi phương trình ln4x2=xy+y là phương trình ẩn x tham số y.

Ta có ptln4x2=yx+1.

Với x=1ln4=0 (vô lí) x1.

y=ln4x2x+1=fx.

Xét hàm số fx=ln4x2x+1 với x1,x0 ta có f'x=8x4x2x+1ln4x2x+12=2+2xln4x2x+12.

Cho f'x=02+2xln4x2=0.

Tiếp tục xét hàm số gx=2+2xln4x2 ta có g'x=2x22x=22xx2,g'x=0x=1.

Có bao nhiêu giá trị thực của y để với mỗi y tồn tại đúng 2 giá trị (ảnh 1)

Dựa vào BBT ta thấy g(x) = 0 có nghiệm duy nhất x = a > 0 và với x>agx<00<x<agx>0x<0gx<0

fx=0 có nghiệm duy nhất x = a > 0

BBT hàm số f(x) như sau:

Có bao nhiêu giá trị thực của y để với mỗi y tồn tại đúng 2 giá trị (ảnh 2)

Do đó để phương trình y=ln4x2x+1=fx có đúng hai nghiệm thì y=0y=fa.

Vậy có 2 giá trị thực của y thỏa mãn.

Chọn C.                 

Copyright © 2021 HOCTAP247