Cho hàm số y = f(x) liên tục trên R. Đồ thị của hàm số y = f(1 - x) được cho

Câu hỏi :

Cho hàm số y = f(x) liên tục trên . Đồ thị của hàm số y = f(1 - x) được cho trong hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình f1xx+2+m=1 có đúng 3 nghiệm phân biệt thuộc [-1; 1]?

A. 3                             

B.                            

C.                            

D. 1 

* Đáp án

A

* Hướng dẫn giải

Từ đồ thị hàm số y = f(1 - x) ta suy ra BBT hàm số y = f(x) như sau:

Cho hàm số y = f(x) liên tục trên R. Đồ thị của hàm số y = f(1 - x) được cho (ảnh 2)

Đặt t=1xx+2=x+1x+2t'=3x+22<0 x2.

 Với x [-1;1]t[0;2]

Ta có BBT hàm số f(t) như sau:

Cho hàm số y = f(x) liên tục trên R. Đồ thị của hàm số y = f(1 - x) được cho (ảnh 3)

Khi đó bài toán trở thành: Có bao nhiêu giá trị nguyên của m để phương trình |f(t) + m| = 1 (*) có đúng 3 nghiệm phân biệt thuộc [0; 2]

Ta có ft+m=1ft+m=1ft+m=1ft=1m    1ft=1m  2.

Để (*) có 3 nghiệm phân biệt.

TH1: (1) có 2 nghiệm phân biệt và (2) có 1 nghiệm 2<1m11<1m31m=22m<34m<2m=1m=1.

TH2: (1) có 1 nghiệm và (2) có 2 nghiệm phân biệt 1<1m31m=22<1m12m<0m=32m<12m<0.

m2;01. Mà mm2;1;1.

Vậy có 3 giá trị của m thỏa mãn.

Chọn A.

Copyright © 2021 HOCTAP247