Cho các số thực b, c sao cho phương trình z^2 + bz + c = 0 có hai nghiệm

Câu hỏi :

Cho các số thực b, c sao cho phương trình z2+bz+c=0 có hai nghiệm phức z1,z2 thỏa mãn z14+3i=1 z286i=4. Mệnh đề nào sau đây đúng?  

A. 5b + c = 4

B. 5b + c = -12

C. 5b + 6c = 12

D. 5b + c = -4

* Đáp án

B

* Hướng dẫn giải

z1,z2 là hai nghiệm phức của phương trình z2+bz+c=0 nên z2=z1¯.

Khi đó ta có z286i=4z1¯86i=4z18+6i=4.

Gọi M là điểm biểu diễn số phức z1

M vừa thuộc đường tròn C1 tâm I14;3, bán kính R1=1 và đường tròn C2 tâm I28;6, bán kính R2=4.

mC1C2.

Cho các số thực b, c sao cho phương trình z^2 + bz + c = 0 có hai nghiệm (ảnh 1)

Ta có I1I2=42+32=5=R1+R2C1 C2 tiếp xúc ngoài.

Do đó có duy nhất 1 điểm M thỏa mãn, tọa độ điểm M là nghiệm của hệ x2+y28x+6y+24=0x2+y216x+12y+84=0

x=245y=185M245;185z1=245185i là nghiệm của phương trình z2+bz+c=0

z2=245+185i cũng là nghiệm của phương trình z2+bz+c=0

Áp dụng đinh lí Vi-ét ta có z1+z2=b=485b=485,z1z2=c=36.

Vậy 5b+c=48+36=12.

Chọn B.

Copyright © 2021 HOCTAP247