Trong không gain Oxyz, cho đường thẳng d: (x+1)/2=(y-1)/-1=(z-2)/-1 . Gọi (anpha) là mặt phẳng chứa đường thẳng d và tạo với mặt phẳng (Oxy) một góc nhỏ nhất. Khoảng cách từ M(0;3;...

Câu hỏi :

Trong không gain Oxyz, cho đường thẳng d:x+12=y11=z21 . Gọi α  là mặt phẳng chứa đường thẳng d và tạo với mặt phẳng Oxy  một góc nhỏ nhất. Khoảng cách từ M0;3;4  đến mặt phẳng α  bằng

A.  30

B.  26

C.  20

D.  35

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Có góc tạo bởi đường thẳng d và mặt phẳng (Oxy) là d;(Oxy)^

Góc tạo bởi mặt phẳng α  và mặt phẳng Oxy  (α);(Oxy)^ .

Ta có d;(Oxy)^(α);(Oxy)^(α);(Oxy)^mind;(Oxy)^=(α);(Oxy)^

sind,(α)^=ud.kud.k=16cosd,(α)^=306Gọi véctơ pháp tuyến của α  là n=a;b;c, a2+b2+c20

Vì dαun2abc=0c=2ab

cos(Oxy),(α)^=n.kn.k=2aba2+b2+2ab2=306364a24ab+b2=305a24ab+2b2

6a2+24ab+24b2=06a+2b2=0a=2bChọn n=2;1;5 .

Vậy α  đi qua A1;1;2d  và có véctơ pháp tuyến n=2;1;5α:2xy+5z7=0 .

Ta có: dM,(α)=3030=30 .

Copyright © 2021 HOCTAP247