Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=1cm, AC= căn 3cm . Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng 5căn...

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,AB=1cm,AC=3cm . Tam giác SAB, SAC lần lượt vuông tại BC. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng 55π6cm3 . Tính khoảng cách từ C đến SAB .

A. 32cm.

B. 52cm.

C. 34cm.

D. 54cm.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=1cm, AC= căn 3cm . Tam giác SAB, SAC lần lượt vuông tại B và C. Khối cầu ngoại tiếp hình chóp S.ABC có thể tích bằng 5căn5pi/6 . Tính khoảng cách từ C đến (SAB) . (ảnh 1)

Gọi I là trung điểm của SA.

Tam giác SAB, SAC vuông tại B,CIS=IA=IB=ICI  là tâm mặt cầu ngoại tiếp chóp S.ABC.

Gọi H là trung điểm của BC. Vì ΔABC  vuông tại AH  là tâm đường tròn ngoại tiếp tam giác ABCIHABC .

Gọi R là bán kính mặt cầu ngoại tiếp chóp S.ABC.

Theo đề bài ta có:

43πR3=55π6R3=558=1258R=52IS=IA=IB=IC=52.

 

Xét tam giác vuông ABC có: BC=AB2+AC2=2AH=1 .

Xét tam giác vuông IAH có: IH=IA2AH2=541=12 .

SΔABC=12.AB.AC=12.1.3=32VI.ABC=13.IH.SΔABC=13.12.32.

Ta có: SIABC=AdS;ABCdI;ABC=SAIA=2VS.ABCVS.IBC=2VS.ABC=2VI.ABC=2.312=36 .

Xét tam giác vuông SABIB=52SA=2IB=5SB=SA2AB2=2 SΔSAB=12.1.2=1.

 

Ta có: VS.ABC=13dC;SAB.SΔSABdC;SAB=3VS.ABCSΔSAB=3.361=32.

Copyright © 2021 HOCTAP247