Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-2019;2019) để hàm số y-sinx^3-3cos^2x-msinx-1 đồng biến trên đoạn [0; pi/2] .

Câu hỏi :

Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (2019;2019)  để hàm số y=sin3x3cos2xmsinx1  đồng biến trên đoạn [0;π2] .

A. 2020.

B. 2019.

C. 2028.

D. 2018.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có: y=sin3x3cos2xmsinx1=sin3x+3sin2xmsinx4 .

Đặt t=sinx , với y=t3+3t2mt4 .

Bài toán trở thành tìm m để hàm số y=t3+3t2mt4  đồng biến trên [0;1] .

y'0t[0;1]3t2+6tm0,t[0;1]m3t2+6tt[0;1]mf(t)=3t2+6tt[0;1]mmin[0;1]f(t)TXĐ: D= .

Ta có: y'=3t2+6tm .

Để hàm số đồng biến trên

Xét hàm số f(t)=3t2+6t  ta có TXĐ: f(0)=0;f(1)=9min[0;1]f(t)=0m0 .

Kết hợp điều kiện đề bài {m(2019;0]m  Có 2019 giá trị của m thỏa mãn.

Copyright © 2021 HOCTAP247