Cho hàm số f(x) có đồ thị như hình vẽ bên biết f(2)=-4, f(3)=0 . Bất phương trình f(e^x)

Câu hỏi :

Cho hàm số f(x) có đồ thị như hình vẽ bên biết f(2)=4,f(3)=0 . Bất phương trình f(ex)<m(3ex+2019)  có nghiệm trên (ln2;1)  khi và chỉ khi:

Cho hàm số f(x)  có đồ thị như hình vẽ bên biết f(2)=-4, f(3)=0 . Bất phương trình f(e^x)<m((3e^x+2019)  có nghiệm trên   khi và chỉ khi: (ảnh 1)

A. m>41011.

B. m>42025.

C. m43e+2019.

D. m>f(e)3e+2019.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Đặt t=ex .

Do x(ln2;1)t(2;e) .

Bất phương trình đã cho trở thành: f(t)<m(3t+2019)  có nghiệm trên (2;e) .

m>f(t)3t+2019 có nghiệm trên (2;e) .

Xét hàm số g(t)=f(t)3t+2019  trên (2;e).

Bài toán trở thành tìm m để m>g(t)  có nghiệm trên

m>min[2;e]g(t).

Ta có: g'(t)=f'(t).(3t+2019)3f(t)(3t+2019)2>0.

Nhận xét: Với t(2;e){f'(t)>02025<3t+2019<3e+20194<f(t)<0g'(x)>0 .

Do đó ta có: m>min[2;e]g(t)=g(2)=f(2)2025=42025.

Vậy m>42025.

Copyright © 2021 HOCTAP247